

OBU Programming Station 9955

The OPS 9955 Programming Station allows toll road operators to program their customer's On-Board Units (OBU) in a fast and seamless way right at their distribution points. The programming station allows the toll road operator to store customer data information relative to a specific tolling account before the transponder is distributed to the customer.

The OPS is used to program account-specific data for use in All Electronic Toll (AET) collection, Open Road Tolling (ORT) or High Occupancy Tolling (HOT), as well as information linked to a user or a vehicle and specific tolling and IntelliDrive applications. The data is programmed directly on the transponder. This personalization procedure takes place within a few minutes and is also synchronized with the software application running on a computer system. The system allows the creation and testing of complete applications, as well as changing specific data fields (attributes) on the transponder.

Data fields available for programming onto the transponder:

- Driver information: name, account number, address, driver's license:
- Vehicle information: license plate number, classification, registration information;
- Account information: date account opened, account type, payment category.

The data transfer between the OPS and the transponder is performed wirelessly via 5.9 GHz DSRC open-protocol communication. The complete OPS system consists of all hardware and software necessary to program a transponder.

The Kapsch OPS-9955 allows operators to complete the personalization process at the transponders' distribution point – the point of sale – to the end-user. This is possible because the OPS 995 directly interfaces with the customer service center via a standard

Ethernet interface (TCP/IP and UDP/IP) or a serial interface (RS232).

The software consists of the OPS' firmware and a software driver for the operator's customer service platform, which enables the application to communicate with the OPS.

The OPS-9955 supports various authentication methods and encryption protocols required in the personalization process, to ensure the highest security of customer information.

5.9 GHz OPS-9955 OBU Programming Station	
Mechanical	
Dimensions	11.8 x 7.9 x 6.3 inches
	300 x 200 x 160 mm
Weight	5.3 lbs / 2.4 kg
Electrical	
Frequency band	5.850 – 5.925 GHz
	Channels 172, 174, 178, 180, 182, 184
External power supply	12 VDC, 0.5 A
Power consumption	Max. 6 W (operating)
Environmental Data	
Operating temperature range	+23°F to +122°F (-5°C to +50°C)
Storage temperature range	-4°F to +158°F (-20°C to +70°C)
Relative humidity	5-95% (non-condensing)
Software Platforms	
Supported operating systems	Windows XP, Linux
Interfaces	
Hardware interfaces	Ethernet RJ-45 (TCP-IP and UDP/IP)
	Serial RS232 D-sub 9-pin male
Protocol	
Supported protocols	IEEE 802.11p (WAVE), IEEE 1609

